פרופ' חיית גרינשפן מהמחלקה להנדסה ביו-רפואית באוניברסיטת תל אביב שותפה לפיתוח מערכת בינה מלאכותית המאבחנת קורונה
COVID - 19 באמצעות בדיקת CT

בחר הכל
משפטים
כללי
הנדסה
חיי הקמפוס
ASV
מערכות קוונטיות
תחבורה חכמה
רכב אוטונומי
קול קורא
מכונת הנשמה
COVID-19
מטא-חומרים...
הנדסת חשמל
הנדסה מכנית
אולטרה-סגול
אולטרה-סגול
RoboBoat
MRI
בחר הכל
פרס
ברכות
כנס
מחקר
מחקר בפקולטה
פוקוס
מחקר
פרופ' חיית גרינשפן מהמחלקה להנדסה ביו-רפואית באוניברסיטת תל אביב שותפה לפיתוח מערכת בינה מלאכותית המאבחנת קורונה
COVID - 19 באמצעות בדיקת CT
במעבדה לעיבוד תמונות רפואיות הממוקמת בפקולטה להנדסה אוניברסיטת תל אביב, תחת ניהולה של פרופ' חיית גרינשפן מפתחים פתרונות הנדסיים לסיוע בפענוח תמונות רפואיות אשר יעזרו לרופאים להשיג קריאת מקרים מהירה יותר ומדויקת יותר. מהמעבדה יצאו פיתוחים פורצי הדרך בנושא של אבחונים אוטומטים בתמונות MRI ואנליזת גידולים בכבד בבדיקות CT.
בעקבות משבר נגיף הקורונה, עובדת פרופ' גרינשפן על איבחון תוצאות רדיולוגיה של חולי הנגיף. המחקר נעשה בשיתוף עם מספר מרכזים בינלאומיים ובהתבסס על פלטפורמת AI של חברת RADLogics המסייעת לרדיולוגים בפיענוח תמונות של דימות רפואי כמו CT וצילומי רנטגן. פרופ' גרינשפן ושותפיה פיתחו שיטה לאיבחון השפעות נגיף הקורונה על פי בדיקת CT של הריאות במטרה להבדיל בין חולי וירוס קורונה לבין שאינם חולים. בנוסף פיתחה הקבוצה שיטת אפיון כמותי של חומרת המחלה אשר יכולה לשמש כמדד לניטור יעיל, מדויק ומהיר של מצב החולה. כלים אלה יכולים לסייע בזיהוי מגמות של החמרה ושיפור כבר בראשיתן.
בעזרת אמצעים אלה יוכלו רופאים לאתר במהירות חולים שמצבם מחמיר לעומת חולים בדרך להחלמה. איבחון מוקדם שכזה יאפשר לפנות מיטות חיוניות בבתי החולים בכלל ובטיפול נמרץ בפרט. חשוב לציין כי רבים מתלמידי ובוגרי המחלקה להנדסה ביו-רפואית בפקולטה להנדסה עובדים בחברה RADLogics ושותפים לפיתוח פורץ דרך זה.
בתמונות סריקות CT של ריאות בהקשר לתחלואה בנגיף ה Covid-19: מצד שמאל: ריאות של חולה בנגיף הקורונה / אמצע: ריאות של חולה בהחלמה / ימין: אדם בריא
*מקור התמונה: https://arxiv.org/abs/2003.05037
עד כה כלל המחקר מערך בדיקות על 157 חולים מסין וארה"ב והמסקנה הראשונית היא שניתוח AI של התמונה יכול להשיג דיוק גבוה בזיהוי פגיעה של נגיף ה Covid-19 כמו גם לאפשר כימות ומעקב אחר נטל המחלה.
כיום הקבוצה ממשיכה בפיתוח כלי שיאפשר לרשויות לבצע סקרי קורונה באוכלוסיות רחבות באמצעות CT ברמת קרינה נמוכה, בדומה לבדיקות הסקר הנערכות היום לאיתור חולי סרטן. סקר כזה יכול להאיץ את הבדיקות ולהגדיל משמעותית את מספרן, על מנת לאתר חולים במהירות, לבודד אותם ולהעניק להם מיד את הטיפול הנדרש ובמקביל לאפשר לשאר האוכלוסייה להמשיך בשגרת חייה.
מחקר
ד"ר גילי ביסקר יחד עם חוקרים מאוניברסיטת מישיגן ואוניברסיטת קומפלוטנסה פרסמו את מחקרם ב Nature Communications המסביר כיצד ניתן לכמת את שבירת הסימטריה להיפוך-בזמן ללא זרמים
ד"ר גילי ביסקר מהמחלקה להנדסה ביו רפואית ומנהלת המעבדה לאופטיקה, ננו-טכנולוגיה, וביופיזיקה, הצטרפה לפקולטה להנדסה באוניברסיטת תל אביב אחרי 6 שנים באוניברסיטה היוקרתית ואחת הטובות בעולם - MIT שם עבדה במעבדה ניסיונית במחלקה להנדסה כימית ופתחה ננו-גלאים אופטיים המבוססים על ננו-צינוריות מפחמן וגילתה ננו-גלאים לחלבונים פיברינוגן ואינסולין. לאחר מכן עסקה במחקר תיאורטי במחלקה לפיזיקה ב- MIT שם עבדה על תהליכי הרכבה עצמית מחוץ לשיווי משקל, ובהסקת מסקנות לגבי מערכות מורכבות מחוץ לשיווי משקל מתוך מידע חלקי.
פיתוח שיטות לאבחון וטיפול חדשות
"המעבדה בפן הניסיוני, מתמקדת בפיתוח כלים ננו-טכנולוגיים שיאפשרו לעקוב אחרי תהליכים מולקולרים, בשאיפה להבין את הדינמיקה של אותם תהליכים. כלים אלו מבוססים על ננו-חלקיקים הפולטים פלורסנציה בתחום האינפרא אדום, ויכולים לגלות שינויים בסביבה הקרובה שלהם או ספיחה של מולקולות על פני השטח שלהם. בעזרת מעקב אחרי התכונות האופטיות של הננו-חלקיקים הללו במערכות ביולוגיות אפשר ללמוד עליהן ולקבל מידע חדש על תהליכים מיקרוסקופיים שאחראיים על ההתנהגות המקרוסקופית שלהן. כך מסבירה ד"ר ביסקר.
בין השאר, ניתן להשתמש באותם ננו-חלקיקים כסנסורים למולקולות ביולוגיות עבור אפליקציות ביורפואיות על מנת לפתח שיטות אבחון וטיפול חדשות. למשל, במעבדה מפתחת ד"ר ביסקר ננו-סנסורים לחלבונים וביו-סמנים של מחלות כגון סרטן וסכרת, לצורך גילוי מוקדם, ניטור התקדמות המחלה, ובדיקה של יעילות טיפול.
שבירה של סימטריית ההיפוך-בזמן
המעבדה אף מתמקדת בפן התיאורטי בו ד"ר ביסקר מפתחת כלים אנליטיים ונומריים לזיהוי של חוסר שיווי-משקל תרמודינאמי על מנת להבין תהליכים מולקולרים שאחראים לקיומם של חיים. למשל, תא חייב להשקיע אנרגיה על מנת להעביר מטען מקצה אחד של התא לקצהו השני, או על מנת לשנות את מבנה השלד שלו לטובת תנועה במרחב. אלו הן דוגמאות לתהליכים מחוץ לשיווי משקל החיוניים לתפקוד תקין של התא.
כל המערכות החיות נמצאות רחוק משיווי משקל, שמתבטא גם בשבירה של סימטריית ההיפוך-בזמן. כאשר יש במערכת תנועה בכיוון מועדף, או זרם הנראה לעין, קל לזהות שהמערכת אינה בשיווי משקל. לעומת זאת, בהעדר זרם זיהוי הכוחות הפנימיים או החיצוניים שדוחפים את המערכת מחוץ לשיווי-משקל נהיה מאתגר. במקרה זה, ד״ר ביסקר ומשתפי פעולה מאוניברסיטת קומפלוטנסה של מדריד ומאוניברסיטת מישיגן בארה״ב, הדגימו כיצד ניתן לכמת את שבירת הסימטריה להיפוך-בזמן ללא זרמים.
המחקר, שהתפרסם לאחרונה בעיתון Nature Communications, מראה אין ניתן להשתמש בשיערוך המבוסס על פילוג ההסתברות של זמני המתנה כדי לזהות חוסר שיווי משקל. בעזרת השוואת ההתפלגויות של תזמון התהליכים הנצפים במערכת לבין ההתפלגויות של תזמון התהליכים ההפוכים בזמן, ניתן לכמת את אותה שבירת סימטריה ובכך לתת חסם תחתון לכמה רחוקה המערכת משיווי משקל. מדד זה יכול לעזור להבנה בסיסית של מערכות חיות, וללמד אותנו על יעילות של תהליכים מולקולרים, או על המחיר התרמודינמי ההכרחי לדיוק שלהם. ההבנה הזו יכולה גם לעזור לפיתוח מערכות סינטטיות השואבות השראה ממערכות ביולוגיות.
חלקיק נע בקו חד מימדי, עם הסתברות שווה לקפוץ למעלה או למטה. בממוצע, אין זרם במערכת, אך מתוך פרקי הזמן בהם החלקיק מבלה במצבים השונים, לפני קפיצה למעלה לעומת לפני קפיצה למטה, ניתן להסיק שבירת סימטריה להיפוך בזמן.
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון