תחומים:

בחר הכל

משפטים

כללי

הנדסה

חיי הקמפוס

ASV

מערכות קוונטיות

תחבורה חכמה

רכב אוטונומי

קול קורא

מכונת הנשמה

COVID-19

מטא-חומרים...

הנדסת חשמל

הנדסה מכנית

אולטרה-סגול

אולטרה-סגול

RoboBoat

MRI

קטגוריות:

בחר הכל

פרס

ברכות

כנס

מחקר

מחקר בפקולטה

פוקוס

חדשות

NEWS

מה מעניין אותך?

כל הנושאים
Remote sensing of waves
AI
Cyber Security
Geophysical and environmental fluid dynamics
exotic mechanics
Environmental implications
environment
drone
Deep learning
CO2 storage
Health
chemical oxidation
Biomimicry
Biomimetics
Biomedical
Bioelectronics
Beetles
groundwater
Hemodynamics and Biomechanics
Radio Physics and Engineering
nanotechnologies
Optics
optical nanosensors
oil and natural gas
nanomaterials
Numerical models
numerical modelling
Nanoelectronics
Nonlinear optics
Molecular Electronics
Nanophotonics
Metamaterials
Mechanical Engineering
Interfacial Phenomena
materials for water
רוני ארליך וד״ר גילי ביסקר במעבדה האופטית

מחקר

07.07.2021
פלטפורמה חדשנית היכולה לספק משוב מיידי על הפרשת אינסולין מתאי לבלב

סטודנטית לתואר שני וחוקרת מהפקולטה להנדסה פיתחו פלטפורמה שבעתיד תוכל לאפשר ניטור ספיחת אינסולין ברקמה לאחר הזרקה על ידי משאבת אינסולין, ובכך לשפר את הטיפול הניתן לחולי סוכרת.

  • מחקר
  • הנדסה ביו-רפואית

רוני ארליך היא סטודנטית לתואר שני בהנדסה ביו-רפואית במעבדה של ד"ר גילי ביסקר "המעבדה לאופטיקה, ננו-סנסורים, וביופיזיקה" שמפתחת וחוקרת יחד עם חברי המעבדה ננו-חיישנים אופטיים. לאחרונה מאמרה בהנחיית ד"ר ביסקר התפרסם במגזין המדעי Small, ואף נבחר להופיע על הכריכה של הגיליון הקרוב של Small שיצא לאור ב 28 ליולי. במחקר השתתפו גם ד״ר עדי הנדלר-נוימרק ד״ר ורנה וולף ודין אמיר

 

המאמר של רוני עוסק בפיתוח פלטפורמה חדשנית היכולה לספק משוב מידי על הפרשת אינסולין מתאי בטא באמצעות סיגנל אופטי. תאי הבטא, הם התאים בלבלב האחראים על ייצור והפרשת אינסולין על מנת לווסת את רמות הסוכר בדם.

 

המעבדה של ד"ר ביסקר מתמקדת בפיתוח כלים ננו-טכנולוגיים שיאפשרו לעקוב אחרי תהליכים מולקולריים, בשאיפה להבין את הדינמיקה של אותם תהליכים. כלים אלו מבוססים על ננו-חלקיקים הפולטים פלורסנציה בתחום האינפרא-אדום, ויכולים לגלות שינויים בסביבה הקרובה שלהם או ספיחה של מולקולות על פני השטח שלהם. בעזרת מעקב אחרי התכונות האופטיות של הננו-חלקיקים הללו במערכות ביולוגיות אפשר ללמוד עליהן ולקבל מידע חדש על תהליכים מיקרוסקופיים שאחראיים על ההתנהגות המקרוסקופית שלהן. 

 

תגליות במאמר שפורסם

המחקר כלל את פיתוח הסנסורים לאינסולין, אפיונם, והדגמה של השימוש בהם. הסנסורים מבוססים על ננו-צינוריות מפחמן שעברו אקטיבציה המאפשרת זיהוי בזמן אמת של מולקולת המטרה. ננו-הצינוריות מפחמן פולטות פלורסנציה בתחום האינפרא-אדום הקרוב, ובכך מאפשרים דימות בעומק רקמות ודוגמאות ביולוגיות. עוצמת האות הפלורסנטי של החיישנים משתנה עקב קישור האינסולין לפני השטח של הננו-צינוריות וכך מתקבל המשוב על זיהוי מולקולות האינסולין.

 

באמצעות עקומת כיול עבור ריכוזים שונים של אינסולין ניתן להסיק ריכוז לא ידוע של אינסולין מתוך התגובה הפלורסנטית. "במחקר זה הדגמנו בפעם הראשונה את השימוש בננו-צינוריות הפחמן לזיהוי אינסולין בתרבית תאי בטא המפרישים אינסולין בתגובה לגלוקוז. מתוך אנליזה של התגובה הפלורסנטית הצלחנו לכמת באופן מדויק את כמות האינסולין שמופרש ע"י תאי הבטא ולקבל משוב בזמן אמת על יכולת התפקוד של התאים" מסבירה רוני.

בתמונה: איקטוב הננו-צינוריות בצורה חכמה הפך אותן לסנסורים אופטיים לאינסולין. בתגובה לקישור של האינסולין לסנסורים, עוצמת האות הפלורסנטי של הננו-צינוריות משתנה וכך מתקבל המשוב על זיהוי מולקולות האינסולין. מתוך התגובה הפלורסנטית ניתן לחשב באופן מדויק את כמות האינסולין המופרש מתאי הבטא.

 

בשורה משמחת לחולי הסוכרת

פיתוח זה יכול לתרום למחקר בתחום מנגנוני מחלת הסוכרת הקשורה בתפקוד לא תקין של תאי הבטא, בעזרת היכולת לקבל משוב בזמן אמת על פעילותם. בעתיד, הסנסורים יוכלו לאפשר ניטור ספיחת אינסולין ברקמה לאחר הזרקה על ידי משאבת אינסולין, ובכך לשפר את הטיפול הניתן לחולי סוכרת.

 

האישה מאחורי המחקר

רוני סיימה את התואר הראשון שלה במחלקה להנדסה ביו-רפואית ב- 2019 ומיד המשיכה לתואר שני בקבוצה של ד״ר גילי ביסקר. במהלך התואר השני זכתה במלגת משרד המדע ללימודי תואר שני בהנדסה ובמדעים מדוייקים, במלגת הצטיינות של מכון גרטנר למערכות רפואיות ננומטריות, ובמלגת הצטיינות לתואר שני של הפקולטה להנדסה באוניברסיטת תל אביב. רוני נשואה לאריאל מ"פ לוחם בחיל בשריון ובמהלך התואר הראשון נולדו לה שתי בנות מקסימות עלמא (4) ומאיה (2) – כבר אמרנו superwoman אמיתית?

 

הקליקו למאמר המלא כאן.

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

חיישן המתחבר לעצב

מחקר

07.07.2021
טכנולוגיה המשחזרת את תחושת המגע בעצבים שנפגעו בעקבות קטיעה או פציעה

חוקרים מהפקולטה להנדסה ואוניברסיטת תל אביב יצרו חיישן שניתן להשתיל אותו בכל מקום בגוף, החיישן מתחבר לעצב אחר שמתפקד בצורה תקינה ומחזיר לעצב הפגוע חלק מתחושת המגע.

  • מחקר
  • הנדסה ביו-רפואית

טכנולוגיה חדשה ופורצת דרך של אוניברסיטת תל אביב מעוררת תקווה בקרב אנשים שאיבדו את תחושת המגע בעצבים של איברים שונים בעקבות קטיעה או פציעה. הטכנולוגיה שנוסתה על חיות מודל בהצלחה רבה כוללת חיישן זעיר שמושתל בעצב של האיבר הפגוע, למשל באצבע, והוא מחובר ישירות לעצב תקין ובכל פעם שהאיבר נוגע בחפץ אחר, החיישן מופעל ומעביר זרם חשמלי לעצב הבריא, פעולה אשר משחזרת את תחושת המגע. החוקרים מדגישים כי מדובר בטכנולוגיה "בריאה" שמותאמת לגוף האדם וניתן להשתיל אותה בכל מקום בגוף.

 

הטכנולוגיה פותחה בהובלת צוות מומחים מאוניברסיטת תל אביב: ד"ר בן מעוז, יפתח שלומי, שי דיולד וד"ר יעל ליכטמן-ברדוגו מהמחלקה להנדסה ביו-רפואית ובשיתוף קשת תדמור מבית הספר סגול למדעי המוח וד"ר עמיר ערמי מהפקולטה לרפואה ע"ש סאקלר ומהיחידה למיקרוכירורגיה במחלקה לכירורגיה של היד, המרכז הרפואי שיבא. המחקר התפרסם בכתב העת היוקרתי ACS NANO.

 

החוקרים מספרים כי הפרויקט הייחודי התחיל בפגישה בין שני חברים מאוניברסיטת תל אביב: ד"ר עמיר ערמי מהפקולטה לרפואה ומיחידת המיקרו-כירורגיה בשיבא וד"ר בן מעוז מהמחלקה להנדסה ביו-רפואית ובית ספר סגול למדעי המוח. "דיברנו על האתגרים בעבודות שלנו", מספר ד"ר מעוז, "וד"ר ערמי שיתף אותי בקושי שהוא חווה בטיפול באנשים שמאבדים את יכולת החישה באיבר זה או אחר כתוצאה מפציעה. צריך להבין שמדובר בקשת רחבה מאוד של פציעות, החל מפציעות קלות – לדוגמה, מישהו חותך סלט ונחתך מהסכין – ועד לפציעות קשות מאוד. גם אם ניתן לאחות את הפצע ולתפור את העצב הפגוע, במקרים רבים התחושה נותרת פגועה. החלטנו להתמודד יחד עם האתגר הזה, ולמצוא פתרון שיחזיר לפגועים את יכולת החישה".

 

יובהר כי בשנים האחרונות תחום הנוירו-תותבים מבטיח לשפר את חייהם של אלה שאיבדו את התחושה על ידי השתלת חיישנים במקום העצבים הפגועים. אלא שלטכנולוגיה הקיימת מספר חסרונות משמעותיים, כמו ייצור ושימוש מורכבים וכן צורך במקור כוח חיצוני כמו סוללה. כעת, חוקרים מאוניברסיטת תל אביב השתמשו בטכנולוגיה חדישה בשם ננו-גנרטור טריבו-אלקטרי (Nanogenerator triboelectric, או TENG) כדי להנדס ולבדוק על חיות מודל חיישן זעיר שמחזיר את התחושה באמצעות זרם חשמלי שמגיע ישירות מעצב בריא וללא צורך בהשתלה מורכבת או בהטענה.

במסגרת הפיתוח הטכנולוגי החוקרים יצרו חיישן שניתן להשתיל אותו על עצב פגום מתחת לקצה של האצבע, והוא מחזיר למושתל חלק מיכולת החישה באצבע. הפיתוח הייחודי אינו מצריך שימוש במקור מתח חיצוני כגון חשמל או סוללות. החוקרים מסבירים כי החיישן פועל למעשה על כוח החיכוך: בכל פעם שהמכשיר מרגיש חיכוך, הוא נטען לבד.

 

מדובר בשני לוחות זעירים בגודל של פחות מחצי ס"מ על חצי ס"מ. כשהלוחות האלה באים במגע אחד עם השני, הם משחררים מטען חשמלי שמועבר לעצב הבריא. באופן הזה, כשהאצבע הפגועה נוגעת במשהו, הנגיעה משחררת מתח בהתאם ללחץ שהופעל על המכשיר – מתח חלש למגע חלש ומתח חזק למגע חזק – ממש כמו חישה רגילה.

 

לטענת החוקרים ניתן להשתיל את המכשיר בכל מקום בגוף בו יש צורך בשחזור תחושה למגע, והוא עוקף למעשה את אברי החישה הפגועים. כמו כן, החומר שממנו עשוי המכשיר הוא ידידותי לגוף האדם, הוא לא דורש תחזוקה, ההשתלה פשוטה והמכשיר עצמו אינו נראה מבחוץ.

 

לדבריו של ד"ר מעוז, לאחר שבדקו את החיישן החדש במעבדה (יותר מחצי מיליון הקשות אצבע עם המכשיר), החוקרים השתילו אותו בכפות רגליהם של חיות מודל. החיות הלכו כרגיל, מבלי לחוות כל פגיעה בעצבים המוטוריים, ובבדיקות הוכח כי החיישן אפשר להן להגיב לגירויים סנסוריים. "בדקנו את הפיתוח שלנו על חיות מודל, והתוצאות היו מעודדות מאוד", מסכם ד"ר מעוז. "בשלב הבא נרצה לבחון את המשתל על מודלים גדולים יותר ובהמשך – להשתיל את החיישנים שלנו גם באצבעותיהם של בני אדם שאיבדו את יכולת החישה. היכולת הזו עשויה לשפר באופן משמעותי את התפקוד ואת איכות החיים, וחשוב מכך: להגן עלינו מפני סכנה. אנשים שלא יכולים להרגיש מגע גם לא יכולים להרגיש שהאצבע שלהם נמחצת, נשרפת או קופאת".

 

האוזן של החגב בתוך הצ'יפ

מחקר

16.03.2021
לראשונה בעולם: רובוט הצליח "לשמוע" באמצעות אוזן של בעל חיים

ד"ר בן מעוז מהנדסה ביו-רפואית בשיתוף חוקרים ומומחים מאוניברסיטת תל אביב חיברו אוזן אמיתית של חגב – לרובוט

  • מחקר
  • הנדסה ביו-רפואית

פיתוח טכנולוגי וביולוגי של אוניברסיטת תל אביב, חסר תקדים בארץ ובעולם, מאפשר לראשונה לחבר אוזן של בעל חיים מת (חגב) לרובוט שקולט את האותות החשמליים של האוזן ומגיב בהתאם. התוצאה מיוחדת במינה: החוקרים מוחאים מחיאת כף אחת, האוזן של החגב שומעת את הצליל והרובוט נוסע קדימה. החוקרים מוחאים שתי מחיאות כף, האוזן שומעת – והרובוט נוסע אחורה".

 

המחקר האינטרדיסציפלינרי נערך בהובלת ד"ר בן מעוז מהמחלקה להנדסה ביו-רפואית ובית הספר סגול למדעי המוח, בשיתוף צוות מומחים מבית הספר לזואולוגיה ובית הספר סגול למדעי המוח: פרופ' יוסי יובל, פרופ' אמיר אילי, ד"ר אנטון שיינין, עידן פישל, יוני עמית, נטע שביל. תוצאות המחקר התפרסמו בכתב העת היוקרתי Sensors.

 

החוקרים מסבירים שבתחילת המחקר הם ביקשו לבחון כיצד ניתן לשלב את היתרונות של המערכות הביולוגיות גם במערכות הטכנולוגיות, ואיך אפשר להשתמש בחושים של בעלי חיים מתים כחיישנים לרובוט. "בחרנו בחוש השמיעה, כי אפשר להשוות אותו בקלות לטכנולוגיות קיימות – בניגוד לריח למשל ששם האתגר גדול עוד יותר", מדגיש ד"ר מעוז. "האתגר שלנו היה להחליף את המיקרופון אלקטרוני של הרובוט באוזן של חרק מת, לנצל את היכולת של האוזן לקלוט את האותות החשמליים מהסביבה, במקרה הזה את הוויברציות באוויר, ובאמצעות שבב מיוחד להמיר את קלט החרק לקלט של רובוט".

 

לצורך המשימה הייחודית והלא שגרתית, בשלב הראשון החוקרים במעבדה של ד"ר מעוז בנו רובוט שמסוגל להגיב לאותות שהוא מקבל מהסביבה. לאחר מכן, בשיתוף פעולה רב תחומי החוקרים הצליחו לבודד ולאפיין את האוזן של חגב מת, להצליח להחזיק אותה בחיים, כלומר מתפקדת, מספיק זמן כדי ניתן לחבר אותה בהצלחה לרובוט. בשלב האחרון החוקרים הצליחו למצוא דרך לקלוט את האותות שנקלטים באוזן החגב בדרך שתהיה שימושית גם לרובוט. בסוף התהליך, הרובוט הצליח 'לשמוע' את הצלילים ולהגיב בהתאם.

בתמונה: הרובוט עם הצ'יפ

 

"מעבדתו של פרופ' אילי בעלת ניסיון רב בעבודה עם חגבים, והם פיתחו מיומנויות לבודד את האוזן ולאפיין אותה", מסביר ד"ר מעוז. "מעבדתו של פרופ' יובל בנתה את הרובוט ופיתחה קוד המאפשר לרובוט להגיב לאותות חשמליים של קול. ואילו המעבדה שלי פיתחה מכשיר מיוחד – אוזן-על-שבב – שמאפשר לשמור את האוזן חיה זמן לאורך הניסוי באמצעות אספקה של חמצן ומזון לאיבר, ובמקביל מאפשר להוציא את הסיגנלים החשמליים מאוזן החגב, להגביר ולהעביר אותם לרובוט".

 

ככלל, למערכות ביולוגיות יתרון עצום על מערכות טכנולוגיות – הן מבחינת הרגישות והן מבחינת תצרוכת האנרגיה. לכן הפרויקט של חוקרי אוניברסיטת תל אביב פותח פתח לשילובים חושיים בין רובוטים לחרקים – ועשוי לייתר פיתוחים מסורבלים ויקרים בהרבה בתחום הרובוטיקה.

 

"צריך להבין שמערכות ביולוגיות מוציאות אנרגיה זניחה ביחס למערכות אלקטרוניות. הן ממוזערות, ולכן גם חסכוניות ויעילות, בצורה קיצונית. לשם השוואה, מחשב נייד צורך כ-100 וואט לשעה, ואילו המוח האנושי צורך כ-20 וואט ביממה. הטבע מתקדם מאיתנו בהרבה, לכן כדאי להשתמש בו. ניתן להשתמש בעיקרון שהצגנו, וליישם אותו על חושים אחרים, כמו ריח, ראייה ומישוש. לדוגמה, לבעלי חיים מסוימים יש יכולות מדהימות לזיהוי של חומרי נפץ וסמים, וייצור של רובוט עם אף ביולוגי יוכל לעזור לנו לשמור על חיי אדם ולזהות עבריינים באופן שלא ניתן כיום. יש בעלי חיים שיודעים לזהות מחלות ואחרים שיודעים לחוש רעידות אדמה. השמיים הם הגבול".

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

מצב העומסים המכניים ברקמות סביב פצע כרוני בזמן פעולת מכשיר לטיפול באמצעות לחץ שלילי.

מחקר

21.02.2021
מודל חישובי חדש יביא לשיפור ניכר באופן תכנון חבישות לטיפול בפצעים

מאמרו של פרופ' עמית גפן פורסם לאחרונה בכתב עת יוקרתי בנושא טיפול בלחץ שלילי בפצע באמצעות וואקום

  • מחקר
  • הנדסה ביו-רפואית

פרופ' עמית גפן, ראש המעבדה לביו-מכניקה של מערכת השלד והשרירים במחלקה להנדסה ביו-רפואית באוניברסיטת תל אביב ומומחה עולמי במניעה וטיפול בפצעי לחץ, פרסם מאמר חדש בכתב העת  .Medical Engineering & Physics

 

פצעי לחץ

פצעי לחץ הינם אחת הבעיות החמורות ביותר איתן מתמודדות מערכות בריאות בעולם כולו, הן מבחינת סבל לחולים ולמשפחות והן מבחינת עלות הטיפול. הפצעים הללו הם גם גורם תמותה משמעותי ומובן שיש לעשות הכל כדי למנוע אותם. מחקריו של פרופ' גפן מתמקדים בהבנת אופן התפתחות פצעי לחץ וכן כיבים סוכרתיים בכל הרמות – מהאופן שבו מתים תאים בודדים בגוף ועד לנזק הנראה לעין. הבנות אלו מאפשרות למצוא דרכי מניעה וטיפול יעילות יותר כדי למנוע מוות וסבל של מיליונים רבים.

 

טיפול בלחץ שלילי

טיפול בפצעים באמצעות לחץ שלילי (וואקום) הוא פרקטיקה קלינית מקובלת לריפוי חתכים כתוצאה מניתוחים כירורגיים ופצעים כרוניים, הכוללת הפעלת לחץ שלילי באמצעות משאבה המחוברת לחבישת ספוג הממוקמת על גבי הפצע. עם זאת, ההשפעות הביומכניות של טיפול זה אינן מובנות עדיין ולכן פותח בקבוצת המחקר של פרופ' עמית גפן מודל חישובי מתקדם ביותר מסוגו לצורך סימולציות של עוצמת העומסים המכניים והתנאים הביומכניים המתפתחים ברקמות הפצע וסביבו.

 

המודל החישובי החדש מאפשר לחקור את השפעות גודל הלחץ השלילי ותכונות חבישת הספוג על התנאים הביומכניים השוררים ברקמות. המודל זיהה בהצלחה את הפרמטרים החשובים באמצעותם ניתן לשלוט על התנאים ברקמות סביב הפצע, שהם קריטיים לצורך ריפוי והחלמה.

 

המודל והתוצאות שהושגו באמצעותו דווחו לאחרונה בכתב-העת Medical Engineering & Physics. העבודה בוצעה במימון מענק מחקר STINTS של הקהילה האירופית בנושא בריאות ותפקוד העור ומענק משרד המדע והטכנולוגיה בנושא מכשירים רפואיים באינטראקציה עם העור שהוענקו לפרופ' עמית גפן - שהוא וקבוצת המחקר שלו מובילים עולמיים בנושאים הללו.   

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>