ד"ר ירון טולדו פיתח מערכת למדידת גלים וזרמים לזיהוי סכנות

בחר הכל
משפטים
כללי
הנדסה
חיי הקמפוס
ASV
מערכות קוונטיות
תחבורה חכמה
רכב אוטונומי
קול קורא
מכונת הנשמה
COVID-19
מטא-חומרים...
הנדסת חשמל
הנדסה מכנית
אולטרה-סגול
אולטרה-סגול
RoboBoat
MRI
בחר הכל
פרס
ברכות
כנס
מחקר
מחקר בפקולטה
פוקוס
מחקר
ד"ר ירון טולדו פיתח מערכת למדידת גלים וזרמים לזיהוי סכנות
הים נמצא בתנועה מתמדת, שלא כמו השטח היבשתי, ומשנה את תכונותיו בזמנים קצרים יותר באופן משמעותי. התנהגות זו מובילה לצורך במאמץ מתמשך של ניטור בקנה מידה גדול במיוחד לאור תגליות הגז המשמעותיות לחופי מדינת ישראל והתוכניות הנרחבות לפיתוח התשתיות הימיות שהביאו את האזור הימי הכלכלי הבלעדי של ישראל למרכז תשומת לב.
ניטור סכנות מהים
מערכת רדאר בתדר גבוה הינה המיכשור היחיד היכול לנטר על פני שטח גדול ובאופן רציף את זרמי השטח והגלים. מערכת כזו מהווה תשתית לאומית ואזורית הן בפן המחקרי של הבנת משטר הזרמים האגני ומשטר הגלים בים העמוק אל מול חופי ישראל, והן בפן האופרטיבי למשל הנצלה של מלחים, התראות צונאמי, זיהוי תנודות של חולות בחופים או התמודדות עם שפכי נפט כתוצאה מהיבקעות מיכלית, המערכת תדע לקבוע מראש לאן הנפט יזרום, לאשדוד או לנהריה.
הקמתן של מערכות ניטור
ד"ר ירון טולדו, ראש המעבדה להנדסה ימית ופיזיקה מבית הספר להנדסה מכנית אוניברסיטת תל אביב הקים מערכות ניטור בחופי ישראל - אשקלון ואשדוד. במעבדה הוא וצוותו מנסים לשלב נגזרות תיאורטיות בסיסיות, מודלים מספריים ותצפיות שדה כדי להשיג הבנה מעמיקה של יסודות הפיזיקה של גלי שטח והופעתם בים התיכון. "הקמתן הינה משימה עצומה, הדורשת מציאת מיקומים מתאימים, רצועות חוף זמינות אף באורך של עד כ - 300 מ', הקמת תשתית, מציאת תדרים מתאימים וקבלת אישורים" מסביר ד"ר טולדו. "מטרות המחקר היו להגיע להקמת תשתית לאומית זו, לבצע בחינה ראשונית של הדאטה המתקבל ממנה ולבחון את היכולת לשלב אותה במודלי חיזוי הזרמים. לאחר התגברות על קשיים בירוקרטיים וטכניים רבים, הפרויקט בוצע בהצלחה ואפשר מדידות ראשונות מסוגן באזורינו. העבודה על קידום תשתית חשובה זו עדיין נמשכת"
ימין: מפת זרמים רדיאליים המתקבלים מתחנת אשקלון, מרכז: מפת זרמים רדיאליים המתקבלים מתחנת אשדוד. שמאל: מפת זרמים באזור החיתוך בין התחנות ללא מגבלת דיוק גאומטרית. שטח הכיסוי יורחב לרוב המים הכלכליים של הים התיכון עם הפעלת שתי תחנות צפוניות לטווח קצר (חיפה ועכו), שהוקמו לאחרונה וכן תחנה לטווח ארוך שממתינה לאישור תקציבי (עתלית).
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
ד"ר גיל מרום פיתח סימולציות ממוחשבות המאפשרות להבין טוב יותר את הביומכניקה של הטיפול בחולי לב ולהעריך את הסיכויים לסיבוכים.
מחלות לב וכלי דם הן גורם המוות המוביל בעולם המפותח המהוות כמעט 30% מכלל מקרי המוות מדי שנה. בלב קיימים ארבעה מסתמים האחראים לזרימה חד-כיוונית של הדם בתוך חללי הלב ומהם לכל איברי הגוף. כל אחד מהמסתמים אחראי על הכוונת הדם בין מדורי הלב השונים בכיוון אחד, בעת כיווץ העליות והחדרים, כדי שיגיע אל העורקים הגדולים ומשם לריאות ולשאר הגוף. לעיתים המחלות במסתמים נגרמות בשל שינויים במבנה הרקמות שלהם ובמרכיביהם, שמובילים להפרעה במעבר הדם ללב ולשאר איברי הגוף. ד"ר גיל מרום, מבית הספר להנדסה מכנית של הפקולטה להנדסה אוניברסיטת תל אביב עושה שימוש במודלים חישוביים שפיתח כדי לחזות את הפיזיקה של מערכת הלב וכלי הדם (המערכת הקרדיווסקולרית) וכך לשפר את הטיפול בחולה לב.
יתרונות המודלים החישוביים במתן הטיפול הנכון לחולה
מורכבות מערכת הלב, המשלבת סיבוכיות פיזיקלית בסדרי גודל שונים, היא סיבה מרכזית לצורך בשימוש במודלים חישוביים הנקראים גם סימולציות. פעולת שאיבת הדם בלב נגרמת על ידי התכווצות שריר הלב, כיוון זרימת הדם נקבע על ידי מסתמי הלב, בעוד התכווצות השריר נשלטת על ידי מערכת ההולכה החשמלית של הלב. מורכבות זו יחד עם המגבלות של ניסויים קליניים וניסויי מעבדה מסבירות בבירור את יתרונות המודלים החישוביים. סימולציות ממוחשבות מאפשרות לערוך ניסויים וירטואליים ולבחון אפשרויות שונות לטיפול באותו חולה. היכולת להשוות מקרים זהים, בניגוד להשוואת מקרים ממספר חולים שונים, מאפשרת ללמוד את ההשפעה של פרמטר מסוים על התפקוד, תוך בידוד השפעה זו מגורמים אחרים, וכך למצוא מגמות המאפיינות את התופעה. נוסף להשלכות הרפואיות החשובות של מחקר זה, המחקר מרתק גם מבחינה הנדסית. בניגוד למקרים הנדסיים "רגילים" בהם מאפייני הבעיה ידועים, כמו גאומטרית הגוף ותכונות החומר ממנו הוא מורכב, במקרים הביולוגים יש שונות גדולה במחלות ובאוכלוסייה ולמעשה המודלים מתבססים פעמים רבות על תהליך הנדסה הפוכה והנחות הנדסיות שונות.
המכניקה של מחלות מסתמי לב והטיפול בהן
מסתמי הלב הם שסתומים הבנויים מעלים גמישים. כאשר פעילותם תקינה הם מאפשרים זרימה חד כיוונית ומונעים זרימה חוזרת. בניגוד לשסתומים מכניים בשימושים הנדסיים, העלים הגמישים צריכים לעבור עיוותים גדולים בכל מחזור לב, לעמוד בלחצים גבוהים ביחס לחוזקם המכני, ולעבוד במשך הרבה מאוד מחזורי לב (כמחזור לשנייה במשך כל שנות החיים). מחלות מסתמי הלב הנפוצות ביותר הן היצרות של המסתם האאורטלי (אבי העורקים) ודליפה של המסתם המיטרלי. טיפולים אפשריים הם תיקונים או החלפת המסתם בניתוחי לב פתוח ובשנים האחרונות נוספה גם אפשרות זעיר פולשנית של השתלת מסתם בצנתור. אך לכל סוגי הטיפולים הללו ישנם סיבוכים אפשריים שכמובן עדיף להימנע מהם.
המודלים החישוביים שאנחנו מפתחים מאפשרים להבין טוב יותר את הביומכניקה של הטיפול ולהעריך את הסיכויים לסיבוכים שונים. לדוגמה, תוצאות המודלים הקודמים שלנו עוזרות למנתחים לבחור את הקוטר הרצוי שאליו יש להקטין את קוטר המסתם החולה על מנת להביא אותו לתפקוד תקין. גם במסתמים המושתלים בצנתור לטיפול בהיצרות המסתם אבי העורקים אנחנו יכולים, על פי תוצאות הסימולציות, להמליץ על גודל המסתם המתאים, מיקום ההשתלה האופטימלי, ודרכי ההשתלה כדי להפחית את הסיכוי לדליפות, תזוזה של המסתם המושתל בגלל התכווצות הלב, ופגיעה בהולכת החשמל בלב בגלל לחצי מגע שהשתל מפעיל על הלב. אותן מסקנות יכולות לעזור גם בתכנון מסתמים תותבים חדשים עם תפקוד טוב יותר וסיכוי מופחת להתפתחות הסיבוכים לאחר ההשתלה.
במחקרים שנערכים עכשיו בקבוצה של ד"ר מרום, מנסים להבין את מנגנוני קרישת הדם על עלי המסתמים המושתלים. המודלים בהם אנו נעזרים בנושא זה, מבוססים על הידע שקרישת הדם נגרמת בגלל מאפיינים מכניים של זרימת הדם, כגון חשיפת טסיות הדם למאמצי גזירה, משך זמן החשיפה, או משך הזמן שהטסית נעצרת במקום בגלל מערבולות. כמו כן, מאפייני הזרימה קובעים גם את סוג קרישי הדם שעלולים להיווצר, תסחיפים או דווקא קרישה על עלי המסתם אשר גורמים להם להתעבות ולהפסיק לתפקד. שיטות דומות עוזרות לנו להבין טוב יותר את אי-ספיקת, או דליפת, המסתם המיטרלי עם מטרה שידע זה יעזור לתת מענה למרבית החולים שכיום אינם מקבלים טיפול בגלל סיכון ניתוחי גבוה. "אחת הסיבות העיקריות שעדיין לא הצליחו לפתח פתרון התערבותי לחולים אלו היא שלמסתם זה יש אנטומיה ופעולה מכנית מסובכים הרבה יותר מאשר במסתם אבי העורקים. הבנה טובה יותר של תפקודו תעזור לשפר טיפולים קיימים ולפתח שתלים חדשים שיצליחו לעמוד בעומסים המכניים הפועלים במסתם זה ולשפר את איכות חיי החולים" מסביר ד"ר מרום.
דוגמא למודלים של פעילות הלב במצב מכווץ ורפוי (צד ימין) ושל זרימת הדם דרך מסתם תותב (צד שמאל)
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
החוקרות והחוקרים מבית הספר להנדסה מכנית עוקבים אחר בעלי החיים והצמחים שחיים בתנאי קיצון, לומדים על התכונות הייחודיות שהם סיגלו לניצול חכם של מים, ומפתחים דרכים שיעזרו גם לנו ואפילו למחשבים שלנו לשרוד בחום שעוד מצפה לנו בהמשך.
החוקרת ד"ר בת אל פנחסיק מפתחת מערכות ביומימטיות, המחקות פתרונות של חיות מדבריות לבעיית המים. במעבדה שלה Biomimetic Mechanical Systems and Interfaces מתמקדמים בביומימטיקה. כלומר, לומדים מאופן פעילותן של חיות בטבע, למשל חרקים וזוחלים, על מנת למצוא פתרון לבעיות אנושיות. את הפתרונות הטבעיים מתרגמים לשימוש בחומרים חכמים שהופקו במעבדה, ומנגנונים פיסיקליים והנדסיים, למשל רובוטים, שמחקים את פעולות החרקים והזוחלים.
החוקר ד"ר הרמן האושטיין המתמקד במעבדה שלו MyFET Lab בתחומים של מעבר חום והזרימה בסקאלות מיקרו, מנגנוני קירור שקוטרם הוא בסדר גודל של עובי שערה בודדת. כיום אחד הגורמים המגבילים את תעשיית האלקטרוניקה היא צפיפות הרכיבים שדורשים הספקת חשמל. מצד אחד המהנדסים במעבדה רוצים להצליח להכניס כמה שיותר רכיבים בשטח קטן מאוד, מה שגורם לרכיב להתחמם מאוד, ומצד שני – למצוא דרכים להוציא מהם את החום באופן הכי יעיל. על מנת לקרר את הרכיבים יש צורך באספקת זורם קר, שיסלק את החום מתוך מערכים בסדר הגודל של מיקרונים (עובי שערה הוא 100-50 מיקרון). המחקר של ד"ר האושטיין וצוותו תורם לתכנון מערכות אלקטרוניות מורכבות כגון מחשבים, מערכות נשק ומכשור רפואי.
הכנסו לקישור לכתבה המלאה: https://www.tau.ac.il/article/using-every-drop
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
פיתוח פורץ דרך של סטודנטים לתואר ראשון מבית הספר להנדסה מכנית מציעים טכנולוגייה חלופית ובטוחה לחילוץ פצועים משטח קרב
העימות האחרון ברצועת עזה אמנם נרגע לעת עתה, אולם בצה"ל מודעים לכך שסבב הלחימה הבא כבר נמצא בפתח. הסטודנטים שלנו לא עוצרים לרגע וחושבים רק קדימה בפיתוח פתרון מהפכני בכל הקשור לפנוי פצועים בשדה הקרב.
דור פראג', תום סלומון וגיא יזרעאלי הם סטודנטים לתואר ראשון מבית הספר להנדסה מכנית בפקולטה להנדסה אוניברסיטת תל אביב והם אחראים על הפיתוח פורץ הדרך כחלק מפרויקט הגמר שלהם, בליווי של רוני שפיר ודני ברקו.
עבור דור, תום וגיא הפרויקט הזה היווה בחירה טבעית לאור תפקידיהם בצבא בסדיר ובשרות המילואים. גיא יזרעאלי משרת במילואים כקצין תומך לחימה ביחידת פלה"ק (פלוגת החייאה קדמית), תום סלומון משרת במילואים כלוחם וחובש ביחידת עורב צנחנים ודור פראג' משרת במילואים ביחידת המודיעין של פיקוד דרום אשר בין היתר מנהלת את פינוי הנפגעים בגזרה. "דיברנו ביננו על הצורך בחילוץ פצוע מן הסוג הזה אשר יתבצע ללא סיכון חיילים נוספים בשטח" כך מסביר תום. "לאור השירות הצבאי נחשפנו לשיטות הפינוי השונות בצה"ל (רכוב, מוסק וימי) וזיהינו את הבעיה אותה ניסינו לפתור".
רחפן המאפשר פינוי מהיר
שיטות פינוי הלוחמים בשדה הקרב הנהוגות כיום טומנות בחובן סיכון רב, הן לצוות המחלץ והן למחולץ עצמו. כיום אין דרך חילוץ שאינה דורשת הימצאות המחלץ בשטח, ויתרה מכך, מלבד חילוץ מוסק (שהינו יקר ומסוכן), אין אפשרות לחילוץ אווירי.
במסגרת פרויקט הגמר לתואר ראשון, הציעו הסטודנטים שיטת חילוץ שאינה דורשת הימצאות המחלץ בשטח, זאת באמצעות רחפן המאפשר פינוי מהיר, זול, יעיל ובטיחותי - הן למפעיל הרחפן והן לחייל הפצוע. בעת הגעת הרחפן לנקודת האיסוף, המערכת מסוגלת לבצע עיגון והרמת הפצוע באופן עצמאי ללא גורם אנושי הנמצא בנקודת הפינוי.
על הרחפן לשאת במשקל מקסימלי של 120 ק"ג, מהירות הפינוי תהא עד 50 קמ"ש בגובה של כ-2 מטרים, כאשר הפינוי יתבצע למרחק קצר (כ- 200 מטר). פינוי הפצוע יעשה באמצעות רתמה ייעודית או אבזם ייעודי המחובר לאפוד שלו כאשר הוא שוכב על הגב, על הצד או על הבטן.
במהלך ביצוע סקר של שוק הרחפנים לנשיאת משקלים גדולים, הגיעו הסטודנטים למסקנה כי הרחפן eVTOL CAV מבית Boeing הינו הרחפן המתאים ביותר לדרישות הפרויקט. במסגרת הפרויקט סקרו הסטודנטים שלוש חלופות אפשריות שעונות על דרישות הפרויקט ובחרו בחלופת כננת עם כבל המובל באמצעות שרוול טלסקופי, שבקצהו מנגנון נעילה מכאני העושה שימוש במגנט לצורך מיקום טבעת הנעילה בסוגר.
בוצעו אנליזות חוזק להוכחת יכולת ההרמה של המנגנון חיבור והתקבל מקדם ביטחון 15:
3. התממשקות מנגנון הנעילה 2. הרחפן מעל נקודת פינוי הפצוע 1. הרחפן נישא על גבי רכב צבאי
הפנים מאחורי הפיתוח - מימין לשמאל: דור פראג', גיא יזרעאלי ותום סלומון